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Abstract: This paper presents our numerical and experimental results of the bifurcation found in
Taylor-Couette system with a free surface. The lengths of the two concentric cylinders are finite
and their axes are parallel to the direction of the gravitational force. When the end walls of the
cylinders are fixed and stationary, numerical and experimental studies have shown that the flow
has multiple patterns depending on the cylinder lengths and the Reynolds numbers.
Experimental studies on flows with free surfaces also gave various flow modes. Our result shows
that the measured and predicted time-dependent displacements of the free surface are in
favorable agreement. In case of the cylinder length comparable with the gap width between the
cylinders, gradual accelerations of the inner cylinder bring the normal mode flows with one,
three and five toroidal vortices. The exchanges of stabilities between these flow modes are
summarized in a phase diagram.
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1. Introduction

Mode transitions found in Taylor-Couette system with finite cylinder lengths was addressed in terms
of low-order bifurcation events (Benjamin, 1978), and their properties have been discussed in detail
(Tagg, 1994; Watanabe et al., 2002; Frana et al., 2005; Hantao et al., 2006). This system has solid
walls on both ends of cylinders and shows a geometrical symmetry with respect the axial direction
(symmetric system). In this paper, we consider Taylor-vortex flows with an additional degree of
freedom: a free surface. The axes of the cylinders are parallel to the gravitational force, and the free
surface appears at the top while the bottom end plate is stationary. This flow system does not hold its
symmetry in the axial direction and it is an asymmetric system.

Some studies were conducted on multi-phase flows and free surface flows around a rotating
cylinder (e.g., Baier and Graham, 1998; Gelfgat et al., 2004). The concern of these studies was about
the influence of density differences whose effect appeared on instabilities of radially separated flows
and axially banded flows. However, the gravitational force was assumed to be small and it was
ignored. Michalland et al. (1993) and Bellon et al. (1998) considered directional viscous fingering
around a rotating cylinder with a horizontal axis. The origin of their studies lay on Hele-Shaw flows
and thin share layers, and no interest was on the liquid-gas interface of the rotating flows. Linek and
Ahlers (1998) performed their experimental observations of flows in the asymmetric system similar



310 Transition of Free-Surface Flow Modes in Taylor-Couette System

to the one studied in this paper. They investigated the mechanism found during the transition from
decelerating Taylor-vortex flows to circular Couette flows.

Special interests in bifurcation of Taylor-vortex flows with a free surface at the top have been
found by one of the present authors. He considered interactions between bottom end wall and the
free surface and carried out experimental studies to reveal transitions between multiple modes
Taylor-vortex flows (Nakamura et al., 1989; Toya et al., 1994; Nakamura and Toya, 1996). We take
over these experiments and adopt our new numerical approach, and investigate the transition in the
asymmetric system. The result obtained in this study is useful, for example, to establish an optimal
control method which runs fluid and chemical machinery more efficiently.

2. Formulation
2.1 Numerical Method

We consider Taylor-Couette system where the two cylinders are concentric and their axes are parallel
to the gravitational force (Fig. 1). The outer cylinder is stationary and the inner cylinder rotates, and
their radii are r,,, and r;,,, respectively. The bottom end wall of the cylinders is a fixed wall and a

free surface appears at the top.

Reference values are the length D =r,, —r, and the velocity U which is given as the
maximum velocity attained during each run of an experiment or a numerical calculation. The
reference time is the fraction of the reference length to the reference velocity. The geometric
parameters representing the system are the radius ratio of cylinders 77 and the aspect ratio T',

N="rip! Tou r=L/D, (1)
where L is the height of the quiescent working fluid between cylinders. The surface tension and the
gravitational force are considered, and the parameters governing the flow are the Reynolds number,
the Weber number and the Froude number given by

Re=UD/v, We=pDU? /o, Fr=U/4JgD . @
Here, v and p are the kinematic viscosity and the density of the working fluid, and o is the surface
tension between the working fluid and the air. The gravitational acceleration on the earth is g.

The behavior of the free surface is modeled by the volume of the fluid method. Let F be the
volume fraction of the working fluid in the region surrounded by discrete grid lines. The contact
angle between the free surface and the solid cylinder wall is the right angle. The equation of

continuity, the unsteady axisymmetric Navier-Stokes equations and the conservation equation of F
are given by

V-ou=0, 3
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Fig. 1. Free surface flow developing between concentric
cylinders. The axes of cylinders are parallel to the
\I/ direction of the gravitational acceleration. The inner
s cylinder rotates and the outer cylinder and the bottom
~— 4 end wall are fixed.
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They are given in the dimensionless cylindrical coordinate system (r,6,z) with time ¢ made

dimensionless by the reference time, and the axis z is vertical upward. The velocity vector # has its
components u, v and w. The pressure is p and the gravitational acceleration vector is g .

The surface profile is estimated by the five-point smoothing function. The smoothed surface
profile z is used to evaluate the effect of the surface tension. The curvature of the surface and the

pressure increment by the presence of the curvature are given by

0%z, /9r?
K= : , ®)
(+@z, /ar)?)>?
K
Ap, =——. )
Ps ==

In this formulation based on the axisymmetric equations, the only primary curvature we consider is
the one in the radial direction, while the curvature in the circumferential direction is assumed to be
small and it is omitted (Batchelor, 1967).

The spatial discretization of the governing equations is the finite difference method, and the
time integration is the fractional step. The boundary conditions of velocity components are the
non-slip conditions on the solid wall, and the boundary condition of the pressure equation is the
Neumann condition estimated from the momentum equations.

2.2 Experiment and Conditions

The experimental apparatus has a stainless steel inner cylinder with radius 40 mm and an acrylic
outer cylinder with radius 60 mm. The radius ratio 7 is 0.667, and the dimensionless radii of the

inner cylinder and the outer cylinder are 2.0 and 3.0, respectively. In the Taylor-vortex system
between finite-length cylinders, the critical Reynolds number for the onset of Taylor vortex is 76.3 at
1= 0.667 (Di Prima and Swinney, 1981). A small amount of aluminum flakes was used as an additive

for visualization observations, and the behaviors of flows were recorded by a still camera and a video
camera.

The working fluid is an aqueous solution of glycerol, and its density, kinematic viscosity and
surface tension are 935 kg/m3, 9.54x107° m?%s and 2.07x107> N/m, respectively. The gravitational
acceleration g is 9.8 m/s2. These property values are adopted to convert experimentally obtained
values to numerically predicted values and vice versa.

The behavior of the free surface was measured in the flow at I'= 5.7. At this aspect ratio, it
was confirmed that the effect of the acceleration rate of the inner cylinder on the fully developed flow
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Fig. 2. Grid refinement study. The profiles of the free surfaces at I' = 1.6 and the
dimensionless time ¢ = 1200. The notation rn represents that the number of the radial
grid points is n.
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is small and the flow in the five-cell mode appears at high probability. The definition of flow modes
found in the symmetric system and the asymmetric system is well summarized by Toya et al. (1994).

In the numerical simulation, the flow at an initial state is stationary, and the circumferential
velocity of the inner cylinder is linearly increased to the value which presents a prescribed Reynolds
number. The increment in the Reynolds number is 8386 per viscous time scale D? /v, which
corresponds to the acceleration of 200 per second in the dimensional form. This linear acceleration
assures unique flows at given Reynolds numbers and fixed aspect ratios. The numerical study was
done at the aspect ratio from 0.8 to 5.0.

The grid interval of the finite difference method is uniform in the radial and the axial
directions. The number of the axial grid points is determined by the aspect ratio times a given
number of the radial grid points. Numerical results are obtained by using some resolutions to
perform a grid refinement study. As an example of this study for the radial grid points of 41, 51, 81,
101, 121 and 201, Fig. 2 shows the displacement of the free surface, which is represented by z,(r), at
I' = 1.8 and the dimensionless time = 1200. When the number of the radial grid points is greater
than or equal to 81, the profiles are almost identical. From this study, the radial grid points of 101
and 121 are used in the present simulation.

3. Results

3.1 Transient Process of Flow Development

Figure 3 shows the time variation of flow vectors (u,w) in the meridional section of the system at T’
= 1.6, Re = 800. The linear acceleration of the inner cylinder ends at the dimensionless time 7 =

76.32. In each figure, the inner cylinder is on the left side and the outer cylinder is on the right side,
and the free surface is at the top and the stationary end wall is at the bottom.
In the first state at + = 16.0, a vortex appears at the inner and lower corner of the section.

t=691.2 t=1700.8 t="704.0 t=1710.4 t=1200.0

Fig. 3. Time variation of flow vectors (u,w) in the meridional section of the flow at I' =
1.6, Re = 800. The linear acceleration of the inner cylinder ends at the dimensionless
time ¢ =76.32.
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(a) Critical locus between N1 and N3. (b) Critical locus between N3 and N5.

Fig. 4. Bifurcation diagrams of the normal one-cell mode (N1), the normal three-cell mode
(N3) and the normal five-cell mode (N5) in the asymmetric system with free surface.

Another vortex can be found near the free surface at ¢+ = 32.0, and the flow with three vortices is
established by ¢ = 128.0.

The asymmetric system has a free surface on the upper side and the usual flow direction there
is from the inner cylinder wall to the outer cylinder wall, which means an outward flow. On the other
hand, the flow is retarded on the bottom end wall and the flow direction is expected to be inward.
These flow directions match our physical intuition, and the modes of flows with these flow directions
are defined as the normal modes.

The flow at # = 128.0 is in the normal mode and it has three vortices, the flow mode is called
the normal three-cell mode. This flow is not stable and it is gradually deformed. Then the flow
pattern changes to the one with one vortices (the normal one-cell mode) in a short duration around ¢
=690.0 to 710. When the Reynolds number is larger, the flow of the normal three-cell mode remains.
As will be seen later, this results in the bifurcation of the normal three-cell mode and the normal
one-cell mode. In the figures of developed flows at # = 128.0 and later, the centrifugal force of the
rotating flow raises the location of the free surface higher near the outer cylinder.

3.2 Bifurcation of Flows

Bifurcation diagrams in the asymmetric system are shown in Fig. 4. The normal one-cell mode (N1)
and the normal three-cell mode (N3) appear at I' from 1.44 to 1.96, and the primary mode which is
defined as a mode appearing at lower Reynolds number is the normal one-cell mode. At T' from 4.0 to
4.26, the primary mode is the normal three-cell mode, and the normal five-cell mode (N5) emerges at
higher Reynolds number. The critical Reynolds number for the exchange of flow modes decreases
with the aspect ratio. No mode other than the normal tree-cell mode appears at the aspect ratio
larger than 1.96 and less than 4.0.

In order to estimate the effect of the mode exchanges on time variations of the flows, two time
dependent variables are used. One is the volume-averaged energy of the axial velocity component w
at time ¢

2
E, ()= é jQWqu, ®

where Q i1s the three-dimensional annulus region filled by working fluid, and the other is the

time-dependent displacement of the free surface at the midpoint radial position between cylinders,
which is denoted by z,,(¢) . Then the time variances of these values

1 —_
o= - [T (E,(6)~ E )2, ©

1 —_
on = AT (20 ()= 2%, (10)
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Fig. 5. Variances of the volume-averaged energy of the axial velocity component and the
displacement of the free surface.

Re =1259 Re = 1595 Re =1877

Fig. 6. Experimental observations of free surface flows in top views. The white circular plane in
the center is the inner cylinder rotating in the counterclockwise direction and the surrounding
thin rim is the acrylic outer cylinder. I'=5.7.

are evaluated. Here, the over bar means the time average and the time integral is performed for fully
developed flows. The variations of O'VZV and 0',%, with the Reynolds number are shown in Fig. 5. The

aspect ratios I' are 1.6 and 4.1, and the critical Reynolds number of the mode exchanges are about
835 and 660, respectively. The values of the variances grow rapidly at these critical Reynolds
numbers. Similar growth at the mode changes was found at another aspect ratio. This means that
the mode exchanges present temporal instabilities, as well as flow pattern instabilities.

3.3 Experimental Observation of Flows

Figure 6 gives top-view photographs of experimentally observed flows. The inner cylinder rotates in
the counterclockwise direction. Two light sources were place at the upper and the lower sides in each
photograph. The free surface with a slight gradient includes flat aluminum flakes along it and it
appears as a bright region in the flow field, while the surface in the dark region is relatively steep.
When the Reynolds number is small, weak distortions of the surface profile appear and circular
waves rise. As the Reynolds number increases, the axisymmetic flow ceases and traveling waves
with a fixed phase velocity emerge. At Re = 1259, the flow keeps its axisymmetry and the waves are

weak circular waves. Deformation of the profile around the cylinders remains small at Re = 1595,
while the traveling waves grows at Re = 1697. These observation results show that the

axisymmetric flow is maintained at the Reynolds number up to one thousand and few hundreds.
Figure 7 shows the experimental observations of the flows from the side views. The inner and
the outer cylinders are on the left and the right sides, respectively. In the figure, the region near the
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Fig. 7. Experimental observations of free surface flows in side views. The upper most vortices
of the normal five-cell mode flows are shown. I'=5.7.

free surface in the normal five-cell mode flow is enlarged, where the upper most vortex rotating in
the clockwise direction and the half of the neighboring lower vortex appear. At larger Reynolds
number, the vortex at the top is deformed.

4, Conclusion

Toroidal vortex flows in an asymmetric Taylor-Couette system with a free surface on the top are
investigated.

Bifurcation locus between the normal one-cell mode and the normal three-cell mode and the
locus between the normal three-cell mode and the normal five-cell mode are determined in the space
of the aspect ratio and the Reynolds number. The critical Reynolds number of the mode exchanges
decreases with the aspect ratio.

The variances of the time-dependent properties grow when the Reynolds number reaches at its
critical values of mode exchanges. This shows that the mode exchanges accompany with the increase
in the time-dependent behavior of the global flows.
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